STUDIES ON AIR-JET TEXTURING OF

DIFFERENT TYPES OF FEED YARNS

By

 

VIJAY KUMAR YADAV

 

 

Department of Textile Technology

 

 

Under the Guidance of

 

 

DR. V.K. KOTHARI

 

 

 

Thesis submitted

in fulfilment of the requirement

of the degree of

 

Master of Technology

 

to the

 

 

INDIAN INSTITUTE OF TECHNOLOGY, DELHI

DECEMBER, 1997



ABSTRACT

 

Possibility of feeding two different types of feed yarn, viz. false-twist textured yarn and different shrinkage potential yarns, in air-jet texturing has been studied. Using a modified false-twist textured feed yarn for air-jet texturing results, in a yarn of higher bulk, instability, and tenacity but, of lower elongation, initial modulus and linear density, as compared to air-jet textured yarns produced from flat feed yarns. The level of bulk can be further enhanced by  post heat-setting the air-jet textured yarns made from  modified false-twist textured yarns, but the resultant yarns have higher instability and inferior tensile properties. Low inter-filament friction, lower skein shrinkage, but a higher bulk retraction property is desirable in the modified false-twist textured yarn meant for air-jet texturing process. Different shrinkage potential feed yarns in parallel-end air-jet texturing results in reduction in bulk initially, with the increasing shrinkage difference level but then, increases with further increase in shrinkage. Instability of air-jet textured yarns also first decreases and, then increases with increasing shrinkage difference.


CONTENTS

                                                                                                                                             Page No.

    ACKNOWLEDGEMENT                                                                                                         i

    ABSTRACT                                                                                                                                ii

    CONTENTS                                                                                                                               iii

    LIST OF FIGURES                                                                                                                  vi

1. INTRODUCTION ........................................................................................................................1

            1.1       INTRODUCTION                                                                                                      1

            1.2       MODIFIED TEXTURING                                                                                         2

            1.3        OBJECTIVES OF THE STUDY                                                                                2

2. REVIEW OF LITERATURE......................................................................................................3

2.1                   AIR-JET TEXTURING                                                                                              3

2.1.1                            Air-jet Texturing Process                                                                              3

2.1.2                            Texturing Nozzle                                                                                          4

2.1.3                            Mechanism of Air-jet Texturing                                                                   8

2.1.4                            Structure and Properties of Air-jet Textured Yarns                                   14

2.1.5                            Applications of Air-jet Textured Yarns                                                      18

2.2                   FALSE-TWIST TEXTURING                                                                                  18

2.2.1                            Twister Unit                                                                                                19

2.2.2                            Feeder Yarn                                                                                                22

2.2.3                            Structure and Properties of False-twist Textured Yarn                              23

2.2.3.1                  Geometrical Structure                                                                                        23

2.2.3.2                 Molecular Structure and Properties                                                                    24

2.3       MODIFIED TEXTURING                                                                                       27

 

3.         MATERIALS AND METHODS.................................................................................   29

            3.1       MATERIALS                                                                                                           29

                        3.1.1    Feed Yarns                                                                                                  29

                                    3.1.1.1             Preparation of False-Twist Textured Yarns                        29

                                    3.1.1.2             Preparation of Yarns with Different                                   32

                                                            Shrinkage Levels

                        3.1.2    Preparation of Air-Jet Textured Yarns                                                      32

            3.2       METHODS OF MEASUREMENT                                                                           34

                        3.2.1    Crimp Properties                                                                                         34

                        3.2.2    Tensile Properties                                                                                        35

                        3.2.3    Physical Bulk                                                                                              35

                        3.2.4    Instability                                                                                                   36

                        3.2.5    Yarn Count                                                                                                 36

                        3.2.6    Yarn Shrinkage                                                                                           38

4.         AIR-JET TEXTURING OF  FALSE-TWIST TEXTURED YARNS..................... 39

            4.1       INTRODUCTION                                                                                                    39

            4.2       EXPERIMENTAL                                                                                                    39

                        4.2.1    Materials                                                                                                     39

                        4.2.2    Preparation of Draw-Textured Yarns                                                        40

                        4.2.3    Preparation of Air-Jet Textured Yarns                                                      40

                        4.2.4    Yarn Testing                                                                                               42

            4.3       RESULTS AND DISCUSSION                                                                                42

                        4.3.1    Effect of Air-Jet Texturing of False-Twist Textured Yarns                       42

                        4.3.2    Effect of  Heat-Setting on the Properties of Air-Jet                                  48

                                     False-Twist Textured Yarns                                                                          

            4.4       CONCLUSIONS                                                                                                      50

5.         AIR-JET TEXTURING OF YARNS WITH DIFFERENT...................................... 51

            SHRINKAGE LEVELS

            5.1       INTRODUCTION                                                                                                    51

            5.2       EXPERIMENTAL                                                                                                    51

                        5.2.1    Materials                                                                                                     51

                        5.2.2    Preparation of Yarns with Different Shrinkage Levels                             52

                        5.2.3    Preparation of Air-jet Textured Yarns                                                       52

                        5.2.4    Yarn Testing                                                                                               53

            5.3       RESULTS AND DISCUSSIONS                                                                              53

                        5.3.1    Relationship between Hot-Pin Temperature and Shrinkage                      53

                        5.3.2    Relationship between Hot-Pin Shrinkage and Tensile Properties of          55

                                    Drawn Yarns

                        5.3.3    Relationship between Hot-Pin Shrinkage and  Properties of                     55

                                    Air-Jet Textured Yarns

                        5.3.4    Effect of Number of Filaments on Yarn Properties                                   73

                        5.3.5    Effect of Heat-Setting at constant  overfed on Air-Jet

                                    Textured Yarns.                                                                                          74

            5.4       CONCLUSIONS                                                                                                      83

6.         CONCLUSIONS AND SUGGESTIONS..................................................................... 85

            6.1       CONCLUSIONS                                                                                                      85

            6.2        SUGGESTIONS FOR FURTHER WORK                                                               85

 

REFERENCES                                                                                                                              86


 


LIST OF FIGURES

Fig.2.1             Taslan type XX jet

Fig.2.2             Hemajet T310 and T311 cores

Fig.2.3             Loop formation process in air-jet texturing

Fig.2.4(a)         Yarn structure of an air-jet textured yarn

Fig.2.4(b)        Different loop configuration in an air-jet textured yarn

Fig.2.5             Poistorq  friction spindle

Fig.2.6             Helical model of false-twist textured yarn

Fig.3.1            Stress-strain curves of Partially Oriented Yarns

Fig.3.2            Schematic diagram of yarn passage through Himson-Rieter Scragg SDS 700 C draw-texturing machine.

Fig.3.3            Schematic diagram of yarn passage through Eltex AT/HS Air-Jet Texturing machine.

Fig.3.4            Instability tester for air-jet textured yarns.

Fig.4.1(a)        Stress-strain  curves of yarns produced from 126/36 POY.

                                (1. Air-jet textured yarn made from POY,I. False-twist textured yarn with coning oil, 2I. Air-jet textured yarns made from  false-twist textured yarn having conning oiing oil, DY-Drawn yarn).

 

Fig.4.1(b)        Stress-strain curves of yarns produced from 126/34 POY.

                                (1. Air-jet textured yarn made from POY,I. False-twist textured yarn with coning oil,II. False twist textured yarn without coning oil, 2I. Air-jet textured yarns made from  false-twist textured yarn having coning oil, 2II. Air-jet textured yarns made from false-twist textured yarn having no coning oil, 3I. Post heat-set air-jet textured yarns made from false-twist textured yarn with coning oil,3II. Post heat-set air-jet textured yarn made from false-twist textured yarn having no coning oil, DY-Drawn yarn).

Fig.4.1(c)        Stress-strain curves of yarns produced from 100/36 POY.

                                (1. Air-jet textured yarn made from POY,II. False-twist textured yarn without coning oil, 2II. Air-jet textured yarn made from false-twist textured yarn having no coning oil, 3II. Post heat-set air-jet textured yarn made from false-twist textured yarn having no coning oil, DY. Drawn yarn).

Fig.5.1            Effect of hot-pin temperature on the  hot-air shrinkage of drawn yarns.

Fig.5.2(a)        Effect of hot-air shrinkage on tenacity of drawn yarn produced from 100/36

                       denier POY at 1.6 draw-ratio.

 

Fig.5.2(b)        Effect of hot-air shrinkage on elongation of drawn yarn produced from 100/36 denier POY at 1.6 draw-ratio.

Fig.5.2(c)        Effect of hot-air shrinkage on initial modulus of drawn yarn produced from 100/36 denier POY at 1.6 draw-ratio.

Fig.5.2(d)        Effect of hot-air shrinkage on toughness of drawn yarn produced from 100/36 denier POY at 1.6 draw-ratio.

Fig.5.3            Stress-strain curves of various drawn yarns made from 100/36 denier POY

                                (P. Low shrinkage yarn, 1. Yarn drawn at 60°C hot-pin temperature, 2. Yarn drawn at 80°C hot-pin temperature, 3. Yarn drawn at 100°C hot-pin temperature, 4. Yarn drawn at 120°C hot-pin temperature, 5. Yarn drawn at 140°C hot-pin temperature).

Fig.5.4(a)        Effect of shrinkage difference in feed yarns on physical bulk of air-jet textured yarns produced at constant winding  tension.

Fig.5.4(b)        Effect of shrinkage difference in feed yarns on instability of air-jet textured yarns produced at constant winding  tension.

Fig.5.4(c)        Effect of shrinkage difference in feed yarns on increase in linear density of air-jet textured yarns produced at constant winding  tension.

Fig.5.4(d)        Effect of shrinkage difference in feed yarns on tenacity of air-jet textured yarns produced at constant winding  tension.

Fig.5.4(e)        Effect of shrinkage difference in feed yarns on elongation of air-jet textured yarns produced at constant winding  tension.

Fig.5.5(a)        Stress-strain curves of air-jet textured yarn and parent yarn of 125/100 POY (P. Parent yarn, 1. Air-jet textured at 60°C hot-pin temperature, 2. Air-jet textured at 80°C hot-pin temperature, 3. Air-jet textured  at 100°C hot-pin temperature, 4. Air-jet textured at 120°C hot-pin temperature, 5. Air-jet textured at 140°C hot-pin temperature).

Fig.5.5(b)        Stress strain curves of air-jet textured yarn and parent yarn of 126/36 POY

                                (P. Parent yarn, 1. Air-jet textured at 60°C hot-pin temperature, 2. Air-jet textured at 80°C hot-pin temperature, 3. Air-jet textured  at 100°C hot-pin temperature, 4. Air-jet textured at 120°C hot-pin temperature, 5. Air-jet textured at 140°C hot-pin temperature).

Fig.5.6(a)        Effect of shrinkage difference in feed yarn on physical bulk of air-jet textured yarns produced at constant  winding tension and constant stabilising overfeed.

Fig.5.6(b)        Effect of shrinkage difference in feed yarn on instability of air-jet textured yarns at constant  winding tension and constant stabilising overfeed.

Fig.5.6(c)        Effect of shrinkage difference in feed yarn on increase in linear density of air-jet textured yarns at constant  winding tension and constant stabilising overfeed.

Fig.5.6(d)        Effect of shrinkage difference in feed yarn on tenacity of air-jet textured yarns at constant  winding tension and constant stabilising overfeed.

Fig.5.6(e)        Effect of shrinkage difference in feed yarn on elongation of air-jet textured yarns at constant  winding tension and constant stabilising overfeed.

Fig.5.7(a)        Stress strain curves of air-jet textured yarn and parent yarn of 100/36 POY at constant winding tension.

                                (P. Parent yarn, 1. Air-jet textured at 60°C hot-pin temperature, 2. Air-jet textured at 80°C hot-pin temperature, 3. Air-jet textured  at 100°C hot-pin temperature, 4. Air-jet textured at 120°C hot-pin temperature, 5. Air-jet textured at 140°C hot-pin temperature).

Fig.5.7(b)        Stress strain curves of air-jet textured yarn and parent yarn of 100/36 POY at constant stabilising overfeed.

                                (P. Parent yarn, 1. Air-jet textured at 60°C hot-pin temperature, 2. Air-jet textured at 80°C hot-pin temperature, 3. Air-jet textured  at 100°C hot-pin temperature, 4. Air-jet textured at 120°C hot-pin temperature, 5. Air-jet textured at 140°C hot-pin temperature).


 


                           CONCLUSIONS AND SUGGESTIONS

 

6.1       CONCLUSIONS

            Based on the studies conducted on air-jet texturing of false-twist textured yarns and different shrinkage yarns produced from 126/36, 126/34, 125/100 and 100/36 POY polyester yarns it can be concluded that yarns of higher bulk and higher tenacity could be produced by using false-twist textured feed yarns, but at the expense of higher instability.

            Method of using differential shrinkage feed yarn in air-jet texturing is not effective, as the bulk initially reduces with the increase in shrinkage difference although there is reduction in instability with increase in shrinkage difference. A relatively higher shrinkage difference level there is increase in the bulk with increase in shrinkage different but the yarn instability also increases.

 

6.2      SUGGESTION FOR FURTHER WORK

1.        Research could be taken up for developing a right kind of coning oil to be  applied at false-twist texturing stage, which reduces the inter-filament friction so that, filament separation is better in the air-jet.

2.        For air-jet false-twist textured yarns research could be  taken for optimising the false-twist yarn parameters, to obtain a yarn with minimum  skein shrinkage but a maximum crimp-retraction.

3.        Differential shrinkage method for proceeding a higher bulk air-jet textured yarns could be studied for other polymer types and combinations of different polymers.



 

                                                REFERENCES

 

1.                  B. Piller. Melliand Textilber, 1979, (2), 140 (Eng.Edn. 128).

2.                  Isaacs III. Textile World, 1984, (10), 48.

3.                  S.T. Price. Modern Textiles, 1976, (7), 28.

4.                  M.A. Pritts. Textile World, 1983, (11), 47.

5.                  Simmen. Chemical Fibre International, 1996, 46(1), 49.

6.                  D.K. Wilson. Textile Inst. & Ind., 1979, 17(5), 170.

7.                  D.K. Wilson. Textile Inst. & Ind., 1979, 17(10), 360.

8.                  D.K. Wilson. Fiber Producer, 1982, 10(4), August, 86.

9.                  D.K. Wilson. Chemiefasern/Textilindustrie, 1979, 29/81(8), 591 + E85.

10.              B. Piller and E. Lesykova. Melliand Textilber, 1982, 63/11(7), 487 (Eng. Edn. 485).

11.              G. Bock. Int.Text. Bull., Spinning, 1981, (4), 359.

12.              K.E. Fischer and D.K. Wilson in `Textile Machinery: Investing for the Future', the Textile Institute., Manchester, 1982.

13.              H. Erdmann and K. Fisscher3. International Fiber Journal, 1997, (2), 71.

14.              C. Simmen. Chemiefasern/Textilindustrie, 1987, 37/89(10), 989 + E126.

15.              D.K. Wilson in `Air Jet Texturing and Mingling/Interlacing' Second International Conference, Loughborough University of Technology, 1989, p. 145.

16.              F.J. van Aken. Chemiefasern/Textilindustrie, 1979, 29/81(2), 108 + E13.

17.              H. Artunc, B. Bocht and H. Weinsdorfer. Chemiefasern/Textil Industrie, 1979, 29/81(10), 857 + E118.

18.              V.K. Kothari. Indian Text. J., 1989, (4), 106.

19.              M. Phillips. America's Textiles, 1983,(5), 17.

20.              Demir and G.R. Wray in `Air-Jet Texturing and Mingling/Interlacing' Second International Conference, Longhborough University of Technology, 1989, p. 19.

21.              V.K. Kothari, A.K. Sengupta and J.K. Sensarma. Indian Text. J., 1996, 106(6), March, 46.

22.              C. Atkinson and M.J. Wheeler. Int. Text. Bull., Spinning, 1996, (1), 26.

23.              M. Allison. International Fiber Journal, 1997, (2), 75.

24.              E. Krenzer in `Air Jet Texturing and Mingling/Interlacing', Second International Conference, Loughborough University of Technology, 1989, p. 203.

25.              M. Acar in `Air Jet Texturing and Mingling/Interlacing', Second International Conference, Loughborough University of Technology, 1989, p. 217.

26.              M. Acar in `Air Jet Texturing and Mingling/Interlacing' Second International Conference Loughborough University of Technology, 1989, p. 307.

27.              Eltex AT/HS `Air Jet Texturing Machine Manual, Eltex Textiveredelungs Maschinen GmBH, Reutlingen, Germany.

28.              M.G. Hinchliffe and M.J. Wheeler in `Air Jet Texturing and Mingling/Interlacing' Second International Conference, Loughborough University of Technology, 1989, p. 131.

29.              R. Rilling. Chemiefasern/Textilindustrie, 1981, 31/83(4), 298 + E30.

30.              Rieter-Scragg Air-Jet texturing machine, Jetex 1200, Chemiefasern/Textilindustrie, 1981, 39/91(6), 735 + E88.

31.              M. Acar, R.K. Turton and G.R. Wray. J. Text. Inst., 1986, 77(1), 28.

32.              G. Bock and J. Lünenschloss in `Textile Machinery: Investing for the Future', the Textile Institute, Manchester, 1982.

33.              Demir, M. Acar and R.K. Turton. Chemiefasern/Textilindustrie, 1988, 69(4), 233 + E126.

34.              E. Schwarz and A. Rebsamen. Chemiefasern/Textilindustrie, 1993, 43/95, 244 + E42.

35.              V.K. Kothari and N.B. Timble. Indian J. Fibre & Text. Res., 1991, 16(3), 29.

36.              D. Smelkov and A. Kogan. Chemical Fibres International, 1996, 46(10), 372.

37.              G.R. Wray and J.M. Entwisrtle. J. Text. Inst., 1968, 59, 122.

38.              G.R. Wray and J.M. Entwisrtle. J. Text. Inst., 1969, 60, 411.

39.              M. Acar, R.K. Turton and G.R. Wray. J.Text. Inst., 1986, 77(6), 371.

40.              A.K. Sengupta, V.K. Kothari and J. Srinivasen. Man-made Fibre Year Book of Chemiefasern/Textilindustries, 1990, 74.

41.              M. Acar, R.K. Turton and G.R. Wray. J. Text. Inst., 1986, 77(4), 235.

42.              M. Acar, R.K. Turton and G.R. Wray. J. Text. Inst., 1986, 77(4), 247.

43.              M. Acar, R.K. Turton and G.R. Wray. J. Text. Inst., 1986, 77(6), 359.

44.              L. Coll-Tortosa, M. Puncernan-Garcia and A. Pey-Cunat. Milliand Textilber (Eng.Edn), 1987, 68(9), 627 + E275.

45.              M. Acar. Chemiefasern/Textilindustrie, 1988, 38/90(4), 322 + E35.

46.              M. Acar and A. Demir. Chemiefasern/Textilindustrie, 1989, 39/91(4), 356 + E43.

47.              H. Artunc. Chemiefasern/Textilindustrie, 1981, 31/83, 289 + E29.

48.              V.K. Kothari, A. K. Sengupta and R.S. Rengasamy. Text. Res. J. 1991, 61, 495.

49.              V.K. Kothari, A. K. Sengupta and R.S. Rengasamy. Text. Res. J. 1991, 61, 575.

50.              M. Acar, T.G. King and G.R. Wray. Textile Asia, 1986, (11), 62.

51.              Demir and G.R. Wray in `Air-Jet Texturing: Present and Future', Loughborough University of Technology, 1987, p. 1-1.

52.              V.K. Kothari, A.K. Sengupta, R.S. Rengasamy and B.C. Goswami. Text. Res. J., 1989, 59(6), 317.

53.              V.K. Kothari, R. Chattopadhyay and P. Agrawal. J. Text. Inst., 1996, 87 Part I(2), 335.

54.              A.K. Sengupta, V.K. Kothari and R.S. Rengasamy. Chemiefasern/Textilindustrie, 1990, 40/92, 998 + E113.

55.              G.R. Wray and H.Sen. J. Text. Inst., 1970, 61, 237.

56.              Demir and M. Acar in `Air-Jet Texturing: Present and Future', Loughborough University of Technology, 1987, p. 5-1.

57.              Demir, M. Acar and G.R. Wray. Text. Res. J., 1986, 56, 191.

58.              A.K. Sengupta, V.K. Kothari and R. Alagirusamy. Text. Res. J., 1989, 59(12), 758.

59.              M.J. Denton and A.K. Seth in `Air-Jet Texturing: Present and Future', Loughborough University of Technology, 1987, p. 10-1.

60.              A.K. Sengupta, V.K. Kothari and R.S. Rengasamy. in `Air-Jet Texturing and Mingling/Interlacing', Second International Conference, Loughborough University of Technology, 1989, p. 185.

61.              R.S. Rengasamy, V.K. Kothari and A.K. Sengupta. Melliand Textilber, 1990, 71(9), 655 + E301.

62.              R.S. Rengasamy, V.K. Kothari and A.K. Sengupta. Melliand Textilber, 1990, 71(12), 935 + E421.

63.              Demir, M. Acar and G.R. Wray. Text. Res. J., 1988, 58(6), 318.

64.              M. Acar and G.R. Wray. J. Text. Inst., 1986, 77(6), 377.

65.              A.K. Sengupta, V.K. Kothari and R. Alagirusamy. Chemiefasern/Textilindustrie, 1989, 39/91(6), 731 + E84.

66.              B.C. Goswami, J.G. Martindale and F.L. Scardino. Textile Yarns Technology, Structure, and Applications. John Wiley & Sons, Inc., 1977, p. 382.

67.              T. Istida. JTN monthly, 1996, (3), 103.

68.              M. Stillger and D. Noss. Int. Fiber J., 1997, (2), 66.

69.              K. Bauer. Chemiefasern/Textilindustrie, 1987, 37/89(6), 558 + E60.

70.              H. Artunc and H. Weinsdorfer. Chemiefasern/Textilindustrie, 1989, 39/91(6), 728 + E83.

71.              K. Bauer. Int. Text. Bull., Yarn and Fabric Forming, 1993, (3), 96.

72.              M. Hanisch. Chemiefasern/Textilindustrie, 1985, 35/87, 779 + E86.

73.              K. Greenwood. J. Text. Inst., 1980, 71, 313.

74.              M.J. Denton. Textile Month, 1979, (6), 57.

75.              W.J. Morris and M.J. Denton. J. Text. Inst., 1975, 66(3), 116.

76.              J.J. Thwaites. J. Text. Inst., 1970, 61, 116.

77.              W. Klein and A. Trummer. Text. Mfr., 1973, 100(1), 16.

78.              W.J. Morris and M.J. Denton. J. Text. Inst., 1975, 66(3), 123.

79.              Japanese Texturing Technology'. Int. Text. Bull., Yarn and Fabric Forming, 1993, (3), 100.

80.              G.M. Klawonn. Text. Horizon, 1983, 3, 22.

81.              T.J. Kiang and A. El-Shiekh. Text. Res. J., 1983, 53,1.

82.              T. Takahashi and T. Kajima. J. Text. Mach. Soc. Japan, 1986, 32, 102.

83.              T.J. Kang, W. Li and A. El-Shiekh. Text. Res. J., 1988, 58, 653.

84.              W. Li, T.J. Kang and A. El-Shiekh. Text. Res. J., 1988, 58, 719.

85.              B. Talele, R.K. Dutta, S.S. Raje and R.S. Gandhi. Textile Asia, 1994, (5), 44.

86.              Sen, V.B. Gupta and A. Sengupta. Indian J. Text. Res., 1982, 1.

87.              H.M. El-Behery. Modern Textiles, 1971, 52(7), 24.

88.              D.F. Arthur in `Modern Yarn Production from Man-Made Fibres' (edited by G.R. Wray), Columbine Press, Manchester and London, 1960, p. 100.

89.              J.W.S. Hearle. J. Text. Inst., 1966. 57, T 441.

90.              J.J. Mertens in `Bulk, Strietch and Texture' (edited by P.W. Harrison) the Textile Institute, Manchester, 1966, p 42.

91.              S. Kakiage, H. Nakamichi and A. Kuwako. J. Text. Mach. Soc. Japan (Eng. Edn), 1966, 12, 9.

92.              M.J. Denton. J. Text. Inst., 1975. (2), 80.

93.              M.J. Denton. `New Yarns in the Textile Scene', 4th Shirley International Seminar, Shirley Institute Manchester, 1971.

94.              V.B. Gupta and M. Kumar. Text. Res. J., 1975, 45, 382.

95.              V.B. Gupta and J. Amarathraj. Text. Res. J., 1976, 46, 785.

96.              J.O. Warwicker. Shirley Institute Pamplet S25, 1976, p. 49.

97.              G.L. Hardegree and D.R. Buchanan. Text. Res. J., 1976, 46, 828.

98.              D.S. Barnes and W.J. Morris. J. Text. Inst, 1980, 71, 291.

99.              D.S. Barnes and W.J. Morris. J. Text. Inst, 1980, 71, 305.

100.          S. Ghosh and J. Walhar. Text. Res. J., 1981, 51, 373.

101.          R.K. Datta and R.S. Gandhi, 34th Technological Conference, Ahmedabad, 1993, p. 96.

102.          S.C. Sachan and R.P. Shukla. Synthetic Fibres, 1982, 11(2), 22.

103.          S.S. Raje, S.J. Shah and Y.C. Sareen. Man-made Textile in India, 1982, 21, 41.

104.          W.J. Morris. Shirley Institute Publication S25, 1976, p. 23.

105.          S.K. Pal. Ph.D. Thesis, Indian Institute of Technology, Delhi, 1996.

106.          Wulfhorst and K. Meier. Int. Text. Bull. (Yarn and Fabric Forming), 1993, (3), 67.

107.          B.M. McIntosh. Shirley Institute Publication S39, 1980, 39.

108.          D.S. Brookstein. Text World, 1979, 129, 59.

109.          G. Schubert. Melliand Textilberichte [Eng-Edn], 1973, (7), 714.

110.          I.C. Sharma, N. Gupta, S.K. Ranjan, S.Suneja and S. Mehta. Indian J. Text. Res., 1985, 10(12), 166.

111.          B.Piller. Melliand Textilber,1980,(4),319(Eng.Edn. 522).

112.          B.Piller. Melliand Textilber,1980,(5),402(Eng.Edn. 649).

113.          Annual Book of ASTM Standards ,Vol 07.02,248.

114.          Annual Book of ASTM Standards ,Vol 07.01,601.

115.          Technical Information ,Taslan Bulletin TS-4,1991.

116.          Annual Book of ASTM Standards ,Vol 07.02,684.

1

1



1